///

sistema indeterminístico Graceli ; SISTEMA GRACELI INFINITO-DIMENSIONAL





Potenciais em plasmas

raio é um exemplo de plasma presente na superfície da Terra. Tipicamente, um raio descarrega 30 000 amperes a até 100 milhões de volts e emite luz, ondas de rádio, raios X e até raios gama.[20] As temperaturas do plasma num raio podem atingir ~28 000 kelvin e as densidades de elétrons podem exceder 1024 m−3.

Como os plasmas são muito bons condutores, os potenciais elétricos têm um papel importante. O potencial médio que existe no espaço entre partículas carregadas, independentemente da questão de como ele pode ser medido, é chamado de "potencial de plasma" ou "potencial do espaço". Se um eletrodo é inserido em um plasma, o seu potencial em geral ficará consideravelmente abaixo do potencial do plasma, devido à chamada bainha de Debye. A boa condutividade elétrica dos plasmas faz com que os seus campos elétricos sejam muito pequenos. Disso resulta o importante conceito de "quase neutralidade", que diz que a densidade das cargas negativas é aproximadamente igual à das cargas positivas para grandes volumes de plasma (ne = <Z>ni), mas na escala do comprimento de Debye pode haver desequilíbrio de cargas. No caso especial em que camadas duplas são formadas, a separação das cargas pode se estender por algumas dezenas de comprimentos de Debye.

A magnitude dos potenciais e campos elétricos pode ser determinada por outros meios do que simplesmente encontrando-se a densidade de carga resultante. Um exemplo comum é assumir que os elétrons satisfazem a relação de Boltzmann:

.

///

sistema indeterminístico Graceli ; SISTEMA GRACELI INFINITO-DIMENSIONAL

Diferenciando-se esta relação, obtém-se um meio para calcular o campo elétrico a partir da densidade:

.
///

sistema indeterminístico Graceli ; SISTEMA GRACELI INFINITO-DIMENSIONAL

É possível produzir um plasma que não seja quase neutro. Um feixe de elétrons, por exemplo, só tem cargas negativas. A densidade de um plasma não neutro deve geralmente ser muito baixa, pois de outra forma ele será dissipado pela força eletrostática de repulsão.

Em plasmas astrofísicos, a triagem Debye (atenuação do campo elétrico provocada pela presença de portadores de carga móveis) impede que os campos elétricos afetem diretamente o plasma por grandes distâncias, isto é, maiores do que o comprimento de Debye. Mas a existência de partículas carregadas faz com que o plasma gere e seja afetado por campos magnéticos. Isto pode causar (e efetivamente causa) um comportamento extremamente complexo, como a geração de camadas duplas no plasma, um objeto que separa as cargas por algumas dezenas de comprimentos de Debye. A dinâmica de plasmas interagindo com campos magnéticos externos e auto-gerados é estudada na disciplina acadêmica de magnetoidrodinâmica.

Magnetização

Diz-se que um plasma com um campo magnético forte o suficiente para influenciar o movimento das partículas carregadas está magnetizado. Um critério quantitativo comum é que uma partícula em média completa pelo menos um giro em torno do campo magnético antes de participar de uma colisão, isto é, ωcecoll > 1, onde ωce é a "frequência de giro do elétron" e νcoll é a "taxa de colisão do elétron". Ocorre frequentemente de os elétrons estarem magnetizados e os íons não. Plasmas magnetizados são anisotrópicos, significando que as suas propriedades na direção do campo magnético são diferentes daquelas na direção perpendicular a ele. Enquanto os campos elétricos nos plasmas são geralmente pequenos devido à alta condutividade, o campo elétrico associado a um plasma movendo-se num campo magnético é dado por E = −v x B (onde E é o campo elétrico, v é a velocidade e B é o campo magnético) e não é afetado pela bainha de Debye.[21]

Comentários

Postagens mais visitadas deste blog